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Anticipating chaotic synchronization

Henning U. Voss*
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~Received 23 December 1999!

Dissipative chaotic systems with a time-delayed feedback can drive near-identical systems in such a way that
the driven systems anticipate the drivers by synchronizing with their~arbitrarily distant! future states. This
counterintuitive behavior is globally stable, robust, and a pure result of the interplay between delayed feedback
and dissipation. Thus it constitutes a rather universal phenomenon of nonlinear dynamics. For small anticipa-
tion times, anticipating synchronization also occurs in chaotic systems without a memory term in the driver.

PACS number~s!: 05.45.Xt, 05.45.Vx
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I. INTRODUCTION

It is well known that dissipative systems with a nonline
time-delayed feedback or ‘‘memory’’ can produce chao
dynamics@1,2#, and the dimension of their chaotic attracto
can be made arbitrarily large by increasing their delay timt
sufficiently @3,4#. Recently, it was shown@5# that a time-
delayed feedback system

ẋ52ax1 f ~xt! @xPR, xtªx~ t2t!, f continuous#
~1!

can drive an identical system

ẏ52ay1 f ~yt!1K~x2y! ~KPR!, ~2!

such that both systems are completely synchronized. T
means thatx(t) equalsy(t) for all times t larger than some
transient time; ‘‘x5y’’ is usually called the synchronization
manifold @6# of the coupled system. Forx5y the coupling
term vanishes, and the ‘‘drive system’’~1! and ‘‘response
system’’ ~2! become identical.

In this paper we will consider two other unidirection
coupling configurations; in particular, we will show that~1!
the synchronization manifold can turn out to bex5yt @or,
equivalently,y(t)5x(t1t), meaning that the response sy
tem anticipates the driver#, and that~2! complete synchroni-
zation is also possible if the coupling sets in delayed.
give analytic evidence for both cases~Secs. II and III!.

These results hold for arbitrarily large anticipation time
They are generalized to the case of synchronization betw
coupled chaotic systems described by ordinary differen
equations@7,8#, i.e., without a time delayed feedback in th
driver. In this case the coupling still can be chosen so a
yield an anticipating synchronization manifold, and we gi
numerical evidence that this manifold can indeed be sta
for small anticipation times~Sec. IV!. Finally, we briefly
discuss some of the most counterintuitive consequences
possible applications of anticipating synchronization~Sec.
V!.

*Present address: Fakulta¨t für Physik, Universita¨t Freiburg,
D-79104 Freiburg. Electronic address: hv@physik.uni-freiburg.
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II. ANTICIPATING SYNCHRONIZATION

The first coupling configuration considered resembles
method of ‘‘complete replacement’’@6#, where the driver
variable x substitutes a corresponding variable in the
sponse system. In order to achieve the desired synchron
tion manifoldx5yt , instead of replacingy by x we replace
yt by x. This leads to the response system

ẏ52ay1 f ~x! ~3!

for system~1!. For the time evolution of the difference var
able D(t)ªx(t)2y(t2t), one immediately findsḊ5
2aD. A sufficient synchronization condition in this case
simply

a.0. ~4!

Therefore, the synchronization manifoldx5yt is globally
attracting and asymptotically stable@9#, and after some tran
sient time the system will relax to it. In other words, at tim
t the response system~3! synchronizes with thefuture state
of the driver ~1! at time t1t and anticipates its dynamics
This result is not only independent of the functionf but also
of the time delay, such that in principle arbitrarily high
dimensional chaotic motions can literally be predicted o
an arbitrary space of time. Since the relaxation time of
difference system depends only ona, transient dynamics
play only a minor role, and the onset of synchronization
approached independently oft. The response system for it
part can drive another system, for which it again holds t
the difference system evolves likeḊ52aD ~assumed that
the former systems are already completely synchroniz!,
and so on. Therefore, with a chain of oscillators, the futu
state of the driver can be predicted for any integer multi
of t. For this setup, the relaxation rate to the synchronizat
manifold will decrease not more than linearly with an i
creasing number of oscillators.

We demonstrate this result on the numerical simulation
two coupled Ikeda equations,

ẋ52ax2b sinxt ~5!

ẏ52ay2b sinx, ~6!
5115 ©2000 The American Physical Society
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5116 PRE 61HENNING U. VOSS
wherea,b.0. This model, describing phase shifts in no
linear optics@10#, is a well investigated example for delay
induced chaos@4#. With a Runge-Kutta integrator for delay
differential equations with a time step ofDt50.0025, we
simulate 4000 points each forx and y for the parameterst
52, a51, b520, and random initial conditions@Fig. 1~a!#.
For these parameters the drive system is well inside the
otic regime@4#. The response variabley is shifted two time
units to the left @Fig. 1~a!#, thus anticipating the chaoti
driver x. This can also be seen in the synchronization ma
fold @Fig. 1~b!# and the large value of the correlation coef
cient R between trajectoriesx(t) and y(t2t): R(x,yt)
.0.9999. To show that this result is generic in the sense
it is robust with respect to small mismatches between the
systems, the parameters of the response system are distu
and the values for whichR(x,yt) is still larger than 0.9 are
searched for. These values area resp'0.4, . . .,2.4 andb resp
.0 ~the responsey simply rescales likey→b resp/b y). The
absolute value of an additionally introduced phase shift
the sine function has to be smaller than 0.12p. For a phase
outside this regime, one also observes antisynchroniza
but no unstable solutions. Therefore, anticipating synchro
zation is extremely robust in this example.

These numerical results are in complete accordance w
simple perturbation analysis of the general system equat
themselves: Consider, for arbitrary continuousf, a disturbed
response system~3!,

ẏ52ay1 f ~x!1«g~x!, ~7!

with a bounded continuous functiong(x). The general solu-
tion is

y~ t !5e2aty01E
0

t

ea(u2t) f „x~u!…du

1«E
0

t

ea(u2t)g„x~u!…du, ~8!

wherey05y(t50). Now,

D~ t !5x~ t !2y~ t2t!5e2at~x02eaty0!

1E
0

t

ea(u2t) f „x~u2t!…du2E
0

t

ea(u2t) f „x~u2t!…du

2«E
0

t

ea(u2t)g„x~u2t!…du. ~9!

FIG. 1. Numerically simulated time seriesx(t) ~full line! and
y(t) ~dotted line! ~a! and the synchronization manifold betwee
x(t) and y(t2t) ~b!. The response variabley(t) anticipates the
driver variablex(t) with a time shift oft52.
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For larget, one has, asymptotically,

lim
t→`

uD~ t !u5« lim
t→`

U E
0

t

ea(u2t)g„x~u2t!…duU
<«suptug„x~ t !…u lim

t→`
U E

0

t

ea(u2t)duU
5

«

a
suptug„x~ t !…u. ~10!

A similar result can be derived for a disturbance in the dam
ing term 2ay. Therefore, after some transient time, sm
differences in the systems lead only to small deviations
the trajectories; anticipating synchronization is robust.

III. TIME-DELAYED DISSIPATIVE COUPLING

As a second coupling possibility, for the time being sy
tem ~1! is coupled to a response system via Eq.~2!. In Ref.
@5# local stability of the synchronization manifold has be
proved for a system of the formẋ5F(x,xt), if it is coupled
to a response system in the following way:

ẋ5F~x,xt ,p0!,

ẏ5F„y,yt ,p01K~x2y!…. ~11!

This system depends on a perturbation parameterp that
equalsp0 for the driver andp01K(x2y) for the response
system. In the synchronized statex5y both parameters co
incide. Using r 52(]x2K]p)F(x,xt ,p0) and s
5]xt

F(x,xt ,p0), the time evolution of the difference syste

with state variableD5x2y can be written as

Ḋ52rD1sDt ~12!

for small D, and the synchronization manifold is locally a
tracting if the origin of this equation is stable. Defining
suitable Lyapunov functional for the difference system,
sufficient synchronization condition isr (t).us(t)u @11#. No
assumptions are made about the specific form ofr (t) and
s(t). Even if one does not know the explicit time depende
cies ofr (t) ands(t) ~for this one would need the solution o
the system!, in certain cases it is possible to estimate boun
for r (t) ands(t) by an analysis of the model equations~11!.

For example, applying this procedure to Eqs.~5! and

ẏ52ay2b sinyt1K~x2y!, ~13!

one obtains the sufficient synchronization condition

K.b2a. ~14!

Next, we couple the systems by their delayed state v
ablesxt andyt , i.e., the response is

ẏ52ay2b sinyt1K~xt2yt!. ~15!

Using r 52]xF(x,xt ,p0) and s5(]xt
2K]p)F(x,xt ,p0),

one ends up with the same difference systemḊ52rD
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1sDt , and, with us(t)u5u(b1K)cos(xt)u<ub1Ku, a suffi-
cient synchronization condition becomes

2b2a,K,2b1a. ~16!

In contrast to nondelayed coupling@Eq. ~14!#, K is also lim-
ited from above and may attain negative values.

This condition has been checked again numerically, w
similar results as above. However, it is also observed that
synchronization manifold is only locally attractive; two sy
tems with overly different initial conditions may not be a
tracted by the synchronization manifold before the respo
becomes unstable. The reason is that linear system~12! con-
stitutes only an approximation of the transverse system
small D. This instability has not been observed numerica
in the nondelayed coupling case of Eq.~13!. However, if the
coupling in system~15! is modified so as to yield the re
sponse system

ẏ52ay2b sinyt1K~sinxt2sinyt! ~17!

numerically, instabilities no longer seem to occur for a
value of K. For K52b one again has coupling throug
complete replacement which is globally stable in any ca
and for KÞ2b the same local synchronization conditio
@Eq. ~16!# as in the former case holds. This can be seen
linearizing the corresponding generalization of Eq.~11!, and
proceeding as above.

Since conditions~14! and ~16! are only sufficient but not
necessary for synchronization, in practice the allowed reg
for K may be larger than stated. This is also observed
simulation studies. Note that for the limit of a vanishin
delay, where Eqs.~13! and~15! become identical, the simul
taneous existence of the two synchronization conditions~14!
and ~16! poses no contradiction, since in this case both s
tems exhibit only trivial dynamics and are synchronized
arbitrary coupling constants.

The system composed of Eqs.~5! and ~17! resembles the
system of two coupled phase-locked loops with a time de
~see the Appendix!. Phase-locked loops play an importa
role in consumer electronics and physiological model
@12,13#.

IV. DRIVE SYSTEMS WITHOUT A MEMORY

Anticipating synchronization can also occur in continuo
chaotic systems without a time delayed feedback in
driver. In this case, the chaotic flow of each subsystem
described by a system of at least three ordinary differen
equations, and stability criteria are much harder to achi
than in the former cases of one-dimensional equatio
Therefore, we restrict ourselves to proving the existence
an invariant anticipating manifold. The remaining question
then the stability of this manifold, which will be analyze
numerically.

As an example, two dissipatively coupled Ro¨ssler @14#
systems are investigated, that is

ẋ152x22x3 ,
~18!

ẋ25x11ax2 ,
h
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ẋ35b1x3~x12c!,

ẏ152y22y31K~x12y1,t!,

ẏ25y11ay2 ,

ẏ35b1y3~y12c!.

A numerical stability analysis fort50 was performed re-
cently@6#, with the result that these systems can exhibit co
plete synchronization for a wide range of coupling constan
By introducing the specific coupling termK(x12y1,t), for
tÞ0 complete synchronization becomes impossible, beca
the manifold (x1 ,x2 ,x3)5(y1 ,y2 ,y3) ~or x5y) loses its in-
variance property. However, now defining the transver
system on an anticipating manifold, that is,Dªx2yt , it
becomes

Ḋ152D22D32KD1,t ,

Ḋ25D11aD2 , ~19!

Ḋ35~y1,t2c!D31x3D1 .

Obviously, forany time delayt, D50 is a fixed point of the
coupled systems.

To judge the existence of anticipating chaotic synchro
zation for this system of linear nonautonomous dela
differential equations, the question of stability of the anti
pating manifold has to be considered. Note that it is n
assumed in Eq.~19! that D is small. Surely, for very smal
anticipation timest, synchronization with anticipating cou
pling should be stable for coupling constants for which t
usually coupled systems~with t50) are stable, since other
wise complete synchronization would not be a robust pr
erty of coupled Ro¨ssler systems. On the other hand, it is a
sure that in contrast to the considerations in the previous
sections, the anticipation time must be limited, since oth
wise one could anticipate a chaotic system for arbitr
spaces of time. The question is the following: How far c
the time delay be increased, depending on the coupling c
stant, such that anticipating synchronization remains at le
locally stable? Unfortunately, even for a vanishing anticip
tion time the stability regime in terms of the coupling co
stant can only be estimated numerically@6#, and we are not
aware of any rigorous results. More important, stability c
teria for linear nonautonomous delay-differential equatio
are most often based on Lyapunov functionals, yield
delay-independent stability results. These methods@11# are
therefore of little use here. The delay-dependent criteria
Ref. @15# are also far too conservative to give useful resu
for the present case.

To analyze the stability of the synchronization manifo
of the coupled Ro¨ssler systems@Eqs.~18!#, we compute tra-
jectories for different coupling strengthsK and time delayst
in the anticipating coupling termK(x12y1,t). The correla-
tion coefficients between these trajectories are shown in
2. As one can see, anticipating synchronization seems t
stable for anticipation times up tot50.8. That is, for two
coupled Ro¨ssler oscillators the dynamics of the chao
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5118 PRE 61HENNING U. VOSS
driver can be anticipated for more than one eighth of
intrinsic chaotic period of aboutT56.0.

It would be interesting to relate the maximum anticipati
time of a chaotic system without a time delay to other pro
erties, like its spectrum of Lyapunov exponents and diss
tion rate. Surely, the results would also depend strongly
the kind of coupling, which makes these questions rat
formidable, and are beyond the scope of this paper. Here
have used only scalar dissipative coupling. However, it
be expected that the maximum anticipation time can be
larged considerably by using nonscalar couplings or c
plings with saturation terms to suppress the instability of
response. In the above considered case of two coupled ph
locked loops, the latter case already turned out to be ef
tive, as discussed in the context of Eqs.~15! and ~17!.

V. DISCUSSION

We have given analytic evidence that dissipative cha
systems with time-delayed feedback can force identical s
tems onto a synchronization manifold that involves the
ture state of the drive system, and that those systems
synchronize in the usual sense even if the coupling betw
both lies in the past. These results are counterintuitive, s
in both cases the future evolution of the drive system is
ticipated. This is most evident in the first case, ‘‘anticipati
synchronization,’’ where the response system anticipates
drive system, just by synchronizing to a state that lies in
future of the driving system.

System~1! is the simplest case, containing both dissip
tion and memory. Since the condition for anticipating sy
chronization@Eq. ~4!# does not depend on the specific no
linearity f, the described phenomena are caused only by

FIG. 2. A numerically estimated stability diagram for th
coupled Ro¨ssler systems@Eq. ~18!#. Light ~dark! gray values corre-
spond to large~small! correlation coefficients between the drive a
response trajectories. The black regimes denote where the res
system becomes unstable, and its trajectory is escaping to infi
Additionally, contour lines for a correlation coefficient ofR
50.9999 are shown. In the area labeled ‘‘anticipating synchron
tion,’’ the correlation coefficient exceeds 0.9999. For the cor
sponding parameter values the synchronization manifolds rese
the one of Fig. 1~b!. The model coefficients area50.15, b50.2,
and c510, the integration time step is 0.05, and the data sam
contain 4000 points with random initial conditions.
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interplay of dissipation and memory, and are thus of univ
sal nature.~This phenomenon is completely different from
and has other explanations than, ‘‘lag synchronization’’@16#,
where bidirectional coupling is considered.! The scope of the
memory of the drive system,t, determines how far the re
sponse system can anticipate the dynamics, but the sync
nization conditions are independent oft.

Anticipating synchronization can also occur in continuo
chaotic systems without a memory in the drive system. T
proves that the phenomenon is much more nontrivial,
might be concluded from the coupling of systems where
instability leading to chaos is due to a time delay. Dissipat
and delayed feedback are rather common in nature, and
expect our results to be of some broader applicability:

For anticipating synchronization, the drive system c
produce arbitrarily high-dimensional~thus complex! dynam-
ics; it has been shown that in the asymptotic case of
infinitely large time delay or parameterb in Eq. ~5!, its so-
lution can be completely described by means of a stocha
process@3#. Anticipating synchronization can be applied fo
a fast prediction, i.e., without any computation involved, o
system~1! by simply coupling a near-identical system to
This could be of advantage in fast electronic or optical d
vices, as they appear in communication systems@17# ~also
see the Appendix!.

An immediate consequence of synchronization with d
layed coupling is that systems which are separated by s
distance can still synchronize, even if the signal transmiss
is slow and the coupling only one way. Since the underly
mechanisms are so simple, it should be worth searching
synchronization in physiological systems, where delay
feedback dynamics seem to play a crucial role@18#. In par-
ticular, arrays of phase-locked oscillators are suspected t
important for an understanding of neuronal information p
cessing, and the introduction of a physiologically motivat
time delay may improve such models@19#.

It remains an open question if these phenomena can
exploited forcontrolling chaotic systems. This would be ap
pealing since it would not be necessary to adjust the dela
the period of an unstable periodic orbit as in the method
time-delayed feedback control@20#.
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APPENDIX: COUPLED PHASE-LOCKED LOOPS

We derive the equation of motion for two coupled phas
locked loops~PLL’s! with a time delay in the feedback loop
It will turn out that the coupling term has to be consider
delayed in time, as in Eq.~17!. The main components of a
PLL with a time delay@13# are a reference oscillator produc
ing a harmonic reference signalu1; a controllable oscillator
whose delayed outputu2,t has to be synchronized withu1;
and a phase detector that mixesu1 and u2,t , to yield, after
low-pass filtering, the signalu3 that is fed back into the
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controllable oscillator~Fig. 3!.
To derive the equation of motion for a single PLL, a

sume that the reference oscillator produces a harmonic si
u15A sinQ(t), with Q̇(t)5v0. The controllable oscillator
produces the signalu25B cosC, where the phaseC is con-

FIG. 3. A phase-locked loop with a time delay in the feedba
loop.
,

-

f

e

al

trolled by the characteristicĊ5v1gu3. The signalu1 and
the delayed signalu2, i.e., u2,t , are now multiplied and re-
scaled. This gives the signald u1 u2,t5ABd/2„sin(Q2Ct)
1sin(Q1Ct)…. The second sine function which is of highe
frequency than the first one is subtracted by the low-p
filter, and one hasu35ABd/2 sin(Q2Ct), which is fed back
into the controllable oscillator. Now the phase differencex
between the reference oscillator signalu1 and the delayed
controllable oscillator signalu2,t evolves in time likeẋ5Q̇

2Ċt5v02v2ABgd/2 sin(Qt2C2t)52ABgd/2 sinxt1v0
2v. With v05v andb5ABgd/2, this is Eq.~5! for a50.

Next, the equation of motion for two coupled PLL’s
derived. To couple two PLL’s with state variablesui andv i
( i 51, . . . ,3) in aphysically reasonable way, we disturb th
identical response system by the outputu3, such that the
mean energy in the coupled system is conserved. There
the signalv3 is substituted byv31K(u32v3). Now for the
response system the phase differencey between the common
reference oscillator signalu1 and the delayed controllabl
oscillator signal v2,t changes with time likeẏ5v02v
2ABgd/2 sinyt1K(sinxt2sinyt). With v05v and b
5ABgd/2, this is Eq.~17! for a50.
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