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Anticipating chaotic synchronization
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Dissipative chaotic systems with a time-delayed feedback can drive near-identical systems in such a way that
the driven systems anticipate the drivers by synchronizing with {taebitrarily distant future states. This
counterintuitive behavior is globally stable, robust, and a pure result of the interplay between delayed feedback
and dissipation. Thus it constitutes a rather universal phenomenon of nonlinear dynamics. For small anticipa-
tion times, anticipating synchronization also occurs in chaotic systems without a memory term in the driver.

PACS numbeis): 05.45.Xt, 05.45.Vx

I. INTRODUCTION II. ANTICIPATING SYNCHRONIZATION

The first coupling configuration considered resembles the
method of “complete replacement[6], where the driver
variable x substitutes a corresponding variable in the re-
sponse system. In order to achieve the desired synchroniza-
tion manifoldx=Yy ., instead of replacing by x we replace
y. by x. This leads to the response system

It is well known that dissipative systems with a nonlinear
time-delayed feedback or “memory” can produce chaotic
dynamics[1,2], and the dimension of their chaotic attractors
can be made arbitrarily large by increasing their delay time
sufficiently [3,4]. Recently, it was showf5] that a time-
delayed feedback system

: . =—ay+f
x=—ax+f(x,;) [xeR, x.:=x(t—7), fcontinuous y ay+f(x) ®
@ for system(1). For the time evolution of the difference vari-
can drive an identical system able A(t):=x(t)—y(t—17), one immediately findsA=
—aA. A sufficient synchronization condition in this case is
: simply
y=—ay+f(y)+K(x-y) (KeR), ()

a>0. (4)

such that both systems are completely synchronized. This
means thak(t) equalsy(t) for all timest larger than some Therefore, the synchronization manifoid=y . is globally
transient time; %=y is usually called the synchronization attracting and asymptotically stadl@], and after some tran-
manifold [6] of the coupled system. For=y the coupling  sient time the system will relax to it. In other words, at time
term vanishes, and the “drive systen(l) and “response t the response systefB) synchronizes with théuture state
system” (2) become identical. of the driver(1) at timet+ 7 and anticipates its dynamics.

In this paper we will consider two other unidirectional This result is not only independent of the functibbut also
coupling configurations; in particular, we will show thd)  of the time delay, such that in principle arbitrarily high-
the synchronization manifold can turn out to ke'y, [or,  dimensional chaotic motions can literally be predicted over
equivalently,y(t) =x(t+ 7), meaning that the response sys- an arbitrary space of time. Since the relaxation time of the
tem anticipates the drivgrand that(2) complete synchroni- difference system depends only @n transient dynamics
zation is also possible if the coupling sets in delayed. Weplay only a minor role, and the onset of synchronization is
give analytic evidence for both caséSecs. Il and I1. approached independently of The response system for its

These results hold for arbitrarily large anticipation times.part can drive another system, for which it again holds that
They are generalized to the case of synchronization betweepq gifference system evolves like=— @A (assumed that
couplgd chaotic_: systgms desgribed by ordinary diffgrenti he former systems are already completely synchropjzed
equat|ons[7,_8], i.e., without a_t|me _delayed feedback in the and so on. Therefore, with a chain of oscillators, the future
driver. In this case the coupling still can be chosen so as Qa6 of the driver can be predicted for any integer multiple

yield an anticipating synchronization manifold, and we givey . 'ror this setup, the relaxation rate to the synchronization
numerical evidence that this manifold can indeed be Stabl?nanifold will decrease not more than linearly with an in-

gqr small anuuﬁc)a'ﬂon timegSec. I_\o. _F_mally, we briefly caeasing number of oscillators.
Iscuss some of the most counterintuitive consequences and ye gemonstrate this result on the numerical simulation of

f)/(;ssible applications of anticipating synchronizati@ec. two coupled Ikeda equations,

X=—ax— B sinx, (5)

*Present address: Fakiltdlir Physik, Universita Freiburg, .
D-79104 Freiburg. Electronic address: hv@physik.uni-freiburg.de y=—ay— Bsinx, (6)
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Pl z For larget, one has, asymptotically,
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FIG. 1. Numerically simulated time seriegt) (full line) and = ZSUR|9(X('E))|- (10
y(t) (dotted ling (a) and the synchronization manifold between
X(t) andy(t—r) (b). The response variablg(t) anticipates the A similar result can be derived for a disturbance in the damp-
driver variablex(t) with a time shift of7=2. ing term — ay. Therefore, after some transient time, small
differences in the systems lead only to small deviations in

where a,3>0. This model, describing phase shifts in non-,q trajectories; anticipating synchronization is robust.

linear optics[10], is a well investigated example for delay-
induced chao$4]. With a Runge-Kutta integrator for delay-
differential equations with a time step dt=0.0025, we
simulate 4000 points each farandy for the parameters As a second coupling possibility, for the time being sys-
=2, a=1, =20, and random initial condition$ig. 1(@)].  tem (1) is coupled to a response system via E). In Ref.
For these parameters the drive system is well inside the ch@s] local stability of the synchronization manifold has been
otic regime[4]. The response variableis shifted two time  56yed for a system of the form=F(x,x.), if it is coupled

units to the left[Fig. 1(@)], thus anticipating the chaotic , 4 response system in the following way:
driver x. This can also be seen in the synchronization mani-

fold [Fig. 1(b)] and the large value of the correlation coeffi- x=F(X,X.,Po),
cient R between trajectoriex(t) and y(t—17): R(X,y,)
>0.9999. To show that this result is generic in the sense that - B
it is robust with respect to small mismatches between the two y=F.y:.potK(x=Y)). 11
systems, the parameters of the response system are disturbggl;g system depends on a perturbation paramptehat
and the values for whicR(x,y,) is still larger than 0.9 are equalsp,, for the driver andp,+ K (x—y) for the response
searched for. These values argy~0.4,...,2.4 andBresp  system. In the synchronized state'y both parameters co-
>0 (the responsg simply rescales likg/— Bes/BY).- The i cide. Using r=—(d—Kd)F(x,x,,po) and s
absolute value of an additionally introduced phase shift of_ d, F(X,X,,po), the time evoluti%n of thTe difference system
the sine function has to be smaller than Gr1For a phase .~ N .

outside this regime, one also observes antisynchronizatior‘f\,'Ith state variabled =x—y can be written as
but no unstable solutions. Therefore, anticipating synchroni-
zation is extremely robust in this example.

These numerical results are in complete accordance with
simple perturbation analysis of the general system equatio
themselves: Consider, for arbitrary continudua disturbed
response systel(B),

lIl. TIME-DELAYED DISSIPATIVE COUPLING

A=—rA+sA, (12)

fbr small A, and the synchronization manifold is locally at-
r]ﬂs'acting if the origin of this equation is stable. Defining a
suitable Lyapunov functional for the difference system, a
sufficient synchronization condition it)>|s(t)| [11]. No
S assumptions are made about the specific fornt (0§ and
y=—ay+ix)+eg(x), ™ s(t). Even if one does not know the explicit time dependen-
with a bounded continuous functia(x). The general solu- ~cies ofr (t) ands(t) (for this one would need the solution of
tion is the system in certain cases it is possible to estimate bounds
for r(t) ands(t) by an analysis of the model equatiofid).
For example, applying this procedure to E¢. and

t
y(t)=e *yy+ f e“(""Yf(x(u))du
0

y=—ay—psiny,+K(x-y), (13
t
+Sfoea(wt)9(x(u))d“' (8)  one obtains the sufficient synchronization condition
wherey,=y(t=0). Now, K>B-a. (14)
A(D)=x(t) —y(t— ) =&~ (xo— e“y,) Next, we couple the systems by their delayed state vari-

ablesx, andy,, i.e., the response is

t t
 J e - [ e i o y=—ay—Bsiny,+K(x,~y.). 15)

Using r=—d,F(X,X,,po) and s=((9XT—K&p)F(x,xT,p0),

t
—sf e*(g(x(u—7))du. 9) _ _ .
0 one ends up with the same difference systams —rA
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+sA,, and, with |s(t)|=|(8+K)cosk,)|<|B8+K|, a suffi- X3=Db+X3(X;—C),
cient synchronization condition becomes

Y1=—Y2— Y3+ K(X1—Y1,),

—B—a<K<—pB+a. (16
In contrast to nondelayed couplifi§g. (14)], K is also lim- Y2=Yyitayz,
ited from above and may attain negative values. .
This condition has been checked again numerically, with yz=b+ys(y1—c).

similar results as above. However, it is also observed that the _ N )

synchronization manifold is only locally attractive; two sys- A humerical stability analysis for=0 was performed re-
tems with overly different initial conditions may not be at- cently[6], with the result that these systems can exhibit com-
tracted by the synchronization manifold before the responsBl€te synchronization for a wide range of coupling constants.
becomes unstable. The reason is that linear syét@ncon- ~ BY introducing the specific coupling terii(x;—y, ;), for
stitutes only an approximation of the transverse system fof# 0 complete synchronization becomes impossible, because
small A. This instability has not been observed numericallythe manifold &; ,xz,X3) = (y1,Y2,Ys) (or x=y) loses its in-

in the nondelayed coupling case of Egj3). However, if the variance property. However, now defining the transversal
coupling in system(15) is modified so as to yield the re- System on an anticipating manifold, that &;=x-vy,, it

sponse system becomes
y=—ay— Bsiny.+K(sinx,—siny,) 17 Aj=—A,—A3—KAy,,
numerically, instabilities no longer seem to occur for any A,=A;+al,, (19
value of K. For K=— 8 one again has coupling through
complete replacement which is globally stable in any case, AsZ(yl,T— C)Ag+XzA, .

and for K# — 3 the same local synchronization condition

[Eq. (16)] as in the former case holds. This can be seen byspyiously, foranytime delayr, A=0is a fixed point of the
linearizing the corresponding generalization of EL), and coupled systems.
proceeding as above. - To judge the existence of anticipating chaotic synchroni-
Since conditiong14) and (16) are only sufficient but not = zation for this system of linear nonautonomous delay-
necessary for synchronization, in practice the allowed regimgjfferential equations, the question of stability of the antici-
for K may be larger than stated. This is also observed imating manifold has to be considered. Note that it is not
simulation studies. Note that for the _I|m|t_0f a van_lshlng assumed in Eq(19) that A is small. Surely, for very small
delay, where Eqg13) and(15) become identical, the simul-  anticipation timesr, synchronization with anticipating cou-
taneous existence of the two synchronization conditid#s  jing should be stable for coupling constants for which the
and (16) poses no contradiction, since in this case both SYSysually coupled systersvith 7=0) are stable, since other-
tems exhibit only trivial dynamics and are synchronized forise complete synchronization would not be a robust prop-

arbitrary coupling constants. erty of coupled Resler systems. On the other hand, it is also
The system composed of Ed$) and(17) resembles the  gyre that in contrast to the considerations in the previous two

system of two coupled phase-locked loops with a_time delayections, the anticipation time must be limited, since other-
(see the Appendjx Phase-locked loops play an important yise one could anticipate a chaotic system for arbitrary

role in consumer electronics and physiological modelingspaces of time. The question is the following: How far can

[12,13. the time delay be increased, depending on the coupling con-
stant, such that anticipating synchronization remains at least
IV. DRIVE SYSTEMS WITHOUT A MEMORY locally stable? Unfortunately, even for a vanishing anticipa-
L L . . tion time the stability regime in terms of the coupling con-
Anticipating synchronization can also occur in continuouS - o+ an only be estimated numericdl], and we are not
ghaotml Sﬁt‘ems W't?ﬁm ﬁ t|tr71eﬂdelayfed fehedbsck tm th.%ware of any rigorous results. More important, stability cri-
river. In this case, the chaolic Tiow of each SUbSYSIEM 13q45 for linear nonautonomous delay-differential equations
described by a system of at least three ordinary differenti re most often based on Lyapunov functionals, yielding
equations, and stability criteria are much harder to aChievﬁeIay—independent stability results. These metr[ddlé are
than in the fo”“ef cases of one-d|m_en5|0nal equationsy o efore of little use here. The delay-dependent criteria of
Th‘?fefofe' we rg;tnc_t oursel_ves to proving .the eX|ster_10e ORef. [15] are also far too conservative to give useful results
an invariant anticipating manifold. The remaining question IS

o > . : . or the present case.
tnhuemnetr?saﬁ;ablllty of this manifold, which will be analyzed To analyze the stability of the synchronization manifold

o . of the coupled Rssler system§Egs.(18)], we compute tra-
S Qsmasna?ga}mgst'i t;\g ddltsﬁértJ?;lVe|y coupled Ster[14] jectories for different coupling strengtisand time delays
y 9 ' in the anticipating coupling terrK(x,—y; ;). The correla-
tion coefficients between these trajectories are shown in Fig.
2. As one can see, anticipating synchronization seems to be
. (18 stable for anticipation times up to=0.8. That is, for two
Xo= X1+ aXy, coupled Rassler oscillators the dynamics of the chaotic

X]_: _XZ_X3,
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interplay of dissipation and memory, and are thus of univer-
sal nature(This phenomenon is completely different from,
and has other explanations than, “lag synchronizatifh6],
where bidirectional coupling is considerg@he scope of the
memory of the drive systen¥, determines how far the re-
sponse system can anticipate the dynamics, but the synchro-
nization conditions are independent of

Anticipating synchronization can also occur in continuous
chaotic systems without a memory in the drive system. This
proves that the phenomenon is much more nontrivial, as
might be concluded from the coupling of systems where the
instability leading to chaos is due to a time delay. Dissipation
and delayed feedback are rather common in nature, and we
expect our results to be of some broader applicability:

For anticipating synchronization, the drive system can
produce arbitrarily high-dimension&hus complex dynam-

FIG. 2 A numerically estimated stability diagram for the ics; it has been shown that in the asymptotic case of an
coupled Resler systempEqg. (18)]. Light (dark) gray values corre- infinitely large time delay or parametg in Eq. (5), its so-
spond to larggsmall correlation coefficients between the drive and |;tion can be completely described by means of a stochastic
response trajectories. The black regimes denote where the reSporﬁﬁ)cess[S]. Anticipating synchronization can be applied for
system becomes unstable, and its trajectory is escaping to infinit;gJI fast prediction i.e., without any computation involved, of
Additionally, contour lines for a correlation coefficient d® system(1) by simply coupling a near-identical system to it.
=0.9999 are shown. In the area labeled “anticipating synchroniza=|_hiS could be of advantage in fast electronic or optical de-

tion,” the correlation coefficient exceeds 0.9999. For the corre- ices, as they appear in communication systéi (also
sponding parameter values the synchronization manifolds resemb}/e ! y app y

the one of Fig. b). The model coefficients are=0.15,b=0.2, Seithe App;nd)x i hronizati ith d

and c=10, the integration time step is 0.05, and the data samplef nimme 'at_e consequence of sync ronization with de-

contain 4000 points with random initial conditions. ded coupling _'S that syst_ems Wh'c_h are s_eparated by_ sqme
distance can still synchronize, even if the signal transmission

driver can be anticipated for more than one eighth of its'S SIow and the coupling only one way. Since the underlying
intrinsic chaotic period of abou=6.0. mechanisms are so simple, it should be worth searching for

It would be interesting to relate the maximum anticipationSynchronization in physiological systems, where delayed

time of a chaotic system without a time delay to other prop-fe€dback dynamics seem to play a crucial fdl8]. In par-

erties, like its spectrum of Lyapunov exponents and dissipa:[-'CUIar’ arrays of phase-locked oscillators are suspected to be

tion rate. Surely, the results would also depend strongly offnportant for an qnderstar!ding of neurqnal i_nformatio_n pro-
the kind of coupling, which makes these questions rathef€SSINg, and the_ introduction of a physiologically motivated
formidable, and are beyond the scope of this paper. Here Wtémle delay may improve such mqfde%ﬂsﬁ)]. h b
have used only scalar dissipative coupling. However, it can |t 'émains an open question If these phenomena can be

be expected that the maximum anticipation time can be en@xploited forcontrolling chaotic systems. This would be ap-

larged considerably by using nonscalar couplings or Coupealing.since it would not be necessary to a_djust the delay to
plings with saturation terms to suppress the instability of thet.he pgrllod OJ ?n gtr)]st?(ble periodic orbit as in the method of
response. In the above considered case of two coupled phadiin€-delayed feedback contr20].

locked loops, the latter case already turned out to be effec-

tive, as discussed in the context of E¢5) and(17).

Anticipating
Synchronization
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tems onto a synchronization manifold that involves the fu-

ture state of the drive system, and that those systems can

synchronize in the usual sense even if the coupling between  AppeNDIX: COUPLED PHASE-LOCKED LOOPS

both lies in the past. These results are counterintuitive, since

in both cases the future evolution of the drive system is an- We derive the equation of motion for two coupled phase-

ticipated. This is most evident in the first case, “anticipatinglocked loopsPLL’s) with a time delay in the feedback loop.

synchronization,” where the response system anticipates thi will turn out that the coupling term has to be considered

drive system, just by synchronizing to a state that lies in thelelayed in time, as in Eq17). The main components of a

future of the driving system. PLL with a time delayf13] are a reference oscillator produc-
System(1) is the simplest case, containing both dissipa-ing a harmonic reference signa{; a controllable oscillator

tion and memory. Since the condition for anticipating syn-whose delayed output, , has to be synchronized witly;

chronization[Eq. (4)] does not depend on the specific non-and a phase detector that mixegsandu, ., to yield, after

linearity f, the described phenomena are caused only by thew-pass filtering, the signali; that is fed back into the



PRE 61 ANTICIPATING CHAOTIC SYNCHRONIZATION 5119

trolled by the characteristi¥’ = w + yUs3. The signalu; and
Reference the delayed signal,, i.e., u,,, are now multiplied and re-
scaled. This gives the signdlu, u, .=AB&/2(sin@—V,)
+sin(®+W¥ ). The second sine function which is of higher
frequency than the first one is subtracted by the low-pass
u3 filter, and one has;=ABd4/2 sin@—WV ), which is fed back
— into the controllable oscillator. Now the phase differemxce
between the reference oscillator signgl and the delayed
controllable oscillator signal, . evolves in time likex= 0
~V¥_=wy—w—ABys/2sin@®,—V,,)=—AByd2 sinx,+ w,

) u2 —w. With wp=w and B=AByd/2, this is Eq.(5) for «=0.
Time Controllable Next, the equation of motion for two coupled PLL’s is
Delay Oscillator . s .

derived. To couple two PLL’s with state variablesanduv;

(i=1,...,3) in aphysically reasonable way, we disturb the
FIG. 3. A phase-locked loop with a time delay in the feedbaCkidentical response system by the output such that the
loap. mean energy in the coupled system is conserved. Therefore,
the signalv 5 is substituted by 3+ K(u;—v3). Now for the
controllable oscillatofFig. 3). response system the phase differepbetween the common
To derive the equation of motion for a single PLL, as-reference oscillator signai; and the delayed controllable
sume that the reference oscillator produces a harmonic signgkcillator signal v,, changes with time likey = wy— w

u;=Asin®(t), with ®(t)=w,. The controllable oscillator —ABy4/2 siny,+K(sinx,—siny,). With w,=w and B

produces the signal,= B cos¥, where the phas¥ is con- =AByé/2, this is Eq.(17) for a«=0.
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